Manipulation of Kondo Effect via Two-Dimensional Molecular Self-Assembly
نویسندگان
چکیده
We report manipulation of a Kondo resonance originated from the spin-electron interactions between a twodimensional molecular assembly of TBrPP-Co molecules and a Cu(111) surface at 4.6 K using a low temperature scanning tunneling microscope. By manipulating nearest-neighbor molecules with a scanning tunneling microscope tip we are able to tune the spin-electron coupling of the center molecule inside a small hexagonal molecular assembly in a controlled step-by-step manner. The Kondo temperature increases from 105 to 170 K with a decreasing the number of nearest neighbor molecules from six to zero. This Kondo temperature variation is originated from the scattering of surface electrons by the molecules located at the edges of the molecular layer, which reduces spinelectron coupling strength for the molecules inside the layer. Investigations on different molecular arrangements indicate that the observed Kondo resonance is independent on the molecular lattice.
منابع مشابه
Manipulation of the Kondo effect via two-dimensional molecular assembly.
We report the manipulation of a Kondo resonance originating from the spin-electron interactions between a two-dimensional molecular assembly of TBrPP-Co molecules and a Cu(111) surface at 4.6 K. By manipulating nearest-neighbor molecules with a scanning tunneling microscope tip we are able to tune the spin-electron coupling of the center molecule inside a hexagonal molecular assembly in a contr...
متن کاملTwo-dimensional metal-organic networks as templates for the self-assembly of atom and cluster arrays
This thesis presents a study of the use of two-dimensional metal-organic systems as templates for the organization of metal atoms and clusters on surfaces. We start with a systematic characterization of the metal-organic porous networks formed on Cu(111) by polyphenyl-dicarbonitrile molecules, and of the temperature dependence of the assembly process, leading to a variety of geometrical structu...
متن کاملQuantum Chemical Investigations on C14C10-Branched-Chain Glucoside Isomers Towards Understanding Self-Assembly
Density Functional Theory (DFT) calculations have been carried out using a Polarizable Continuum Model (PCM) in an attempt to investigate the electro-molecular properties of branched-chain glucoside (C14C10-D-glucoside) isomers. The results showed that αconfiguration of pyranoside form is thermodynamically the most stable, while the solution should contain much more β...
متن کاملDiamondoids and DNA Nanotechnologies
Diamondoids are cage-like saturated hydrocarbons consisting of fused cyclohexane rings. The Diamondoids family of compounds is one of the best candidates for molecular building blocks (MBBs) in nanotechnology to construct organic nanostructures compared to other MBBs known so far. The challenge is to find a route for self-assembly of these cage hydrocarbons and their applications in the bottom-...
متن کاملSynthesis and characterization of supramolecule self-assembly polyamidoamine (PAMAM) G1-G1 NH2, CO2H end group Megamer
Supramolecule self assembly polyamidoamine (PAMAM) dendrimer refers to the chemical systems made up of a discrete number of assembled molecular subunits or components. These strategies involve the covalent assembly of hierarchical components reactive monomers, branch cells or dendrons around atomic or molecular cores according to divergent/convergent dendritic branching principles, systematic f...
متن کامل